3.587 \(\int \frac{1}{\sqrt{\tan (c+d x)} (a+b \tan (c+d x))} \, dx\)

Optimal. Leaf size=232 \[ \frac{2 b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d \left (a^2+b^2\right )}-\frac{(a-b) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} d \left (a^2+b^2\right )}+\frac{(a-b) \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} d \left (a^2+b^2\right )}-\frac{(a+b) \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{(a+b) \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )} \]

[Out]

-(((a - b)*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d)) + ((a - b)*ArcTan[1 + Sqrt[2]*Sqrt
[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) + (2*b^(3/2)*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/(Sqrt[a]*(
a^2 + b^2)*d) - ((a + b)*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) + ((a +
 b)*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.248706, antiderivative size = 232, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 11, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.478, Rules used = {3574, 3534, 1168, 1162, 617, 204, 1165, 628, 3634, 63, 205} \[ \frac{2 b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d \left (a^2+b^2\right )}-\frac{(a-b) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} d \left (a^2+b^2\right )}+\frac{(a-b) \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} d \left (a^2+b^2\right )}-\frac{(a+b) \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{(a+b) \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Tan[c + d*x]]*(a + b*Tan[c + d*x])),x]

[Out]

-(((a - b)*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d)) + ((a - b)*ArcTan[1 + Sqrt[2]*Sqrt
[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) + (2*b^(3/2)*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/(Sqrt[a]*(
a^2 + b^2)*d) - ((a + b)*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) + ((a +
 b)*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d)

Rule 3574

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/
(c^2 + d^2), Int[(a + b*Tan[e + f*x])^m*(c - d*Tan[e + f*x]), x], x] + Dist[d^2/(c^2 + d^2), Int[((a + b*Tan[e
 + f*x])^m*(1 + Tan[e + f*x]^2))/(c + d*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{\tan (c+d x)} (a+b \tan (c+d x))} \, dx &=\frac{\int \frac{a-b \tan (c+d x)}{\sqrt{\tan (c+d x)}} \, dx}{a^2+b^2}+\frac{b^2 \int \frac{1+\tan ^2(c+d x)}{\sqrt{\tan (c+d x)} (a+b \tan (c+d x))} \, dx}{a^2+b^2}\\ &=\frac{2 \operatorname{Subst}\left (\int \frac{a-b x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{\left (a^2+b^2\right ) d}+\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} (a+b x)} \, dx,x,\tan (c+d x)\right )}{\left (a^2+b^2\right ) d}\\ &=\frac{(a-b) \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{\left (a^2+b^2\right ) d}+\frac{\left (2 b^2\right ) \operatorname{Subst}\left (\int \frac{1}{a+b x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{\left (a^2+b^2\right ) d}+\frac{(a+b) \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{\left (a^2+b^2\right ) d}\\ &=\frac{2 b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} \left (a^2+b^2\right ) d}+\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}+\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}-\frac{(a+b) \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a+b) \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}\\ &=\frac{2 b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} \left (a^2+b^2\right ) d}-\frac{(a+b) \log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}+\frac{(a+b) \log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}+\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}\\ &=-\frac{(a-b) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}+\frac{(a-b) \tan ^{-1}\left (1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}+\frac{2 b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} \left (a^2+b^2\right ) d}-\frac{(a+b) \log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}+\frac{(a+b) \log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}\\ \end{align*}

Mathematica [C]  time = 0.175864, size = 225, normalized size = 0.97 \[ \frac{-6 \sqrt{2} a^{3/2} \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )+6 \sqrt{2} a^{3/2} \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )-3 \sqrt{2} a^{3/2} \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )+3 \sqrt{2} a^{3/2} \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )+24 b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )-8 \sqrt{a} b \tan ^{\frac{3}{2}}(c+d x) \, _2F_1\left (\frac{3}{4},1;\frac{7}{4};-\tan ^2(c+d x)\right )}{12 \sqrt{a} d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Tan[c + d*x]]*(a + b*Tan[c + d*x])),x]

[Out]

(-6*Sqrt[2]*a^(3/2)*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] + 6*Sqrt[2]*a^(3/2)*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c +
 d*x]]] + 24*b^(3/2)*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]] - 3*Sqrt[2]*a^(3/2)*Log[1 - Sqrt[2]*Sqrt[Tan
[c + d*x]] + Tan[c + d*x]] + 3*Sqrt[2]*a^(3/2)*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] - 8*Sqrt[a]*
b*Hypergeometric2F1[3/4, 1, 7/4, -Tan[c + d*x]^2]*Tan[c + d*x]^(3/2))/(12*Sqrt[a]*(a^2 + b^2)*d)

________________________________________________________________________________________

Maple [A]  time = 0.038, size = 298, normalized size = 1.3 \begin{align*} 2\,{\frac{{b}^{2}}{d \left ({a}^{2}+{b}^{2} \right ) \sqrt{ab}}\arctan \left ({\frac{\sqrt{\tan \left ( dx+c \right ) }b}{\sqrt{ab}}} \right ) }+{\frac{a\sqrt{2}}{2\,d \left ({a}^{2}+{b}^{2} \right ) }\arctan \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }+{\frac{a\sqrt{2}}{2\,d \left ({a}^{2}+{b}^{2} \right ) }\arctan \left ( -1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }+{\frac{a\sqrt{2}}{4\,d \left ({a}^{2}+{b}^{2} \right ) }\ln \left ({ \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) \left ( 1-\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) ^{-1}} \right ) }-{\frac{b\sqrt{2}}{4\,d \left ({a}^{2}+{b}^{2} \right ) }\ln \left ({ \left ( 1-\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) ^{-1}} \right ) }-{\frac{b\sqrt{2}}{2\,d \left ({a}^{2}+{b}^{2} \right ) }\arctan \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }-{\frac{b\sqrt{2}}{2\,d \left ({a}^{2}+{b}^{2} \right ) }\arctan \left ( -1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/tan(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x)

[Out]

2/d*b^2/(a^2+b^2)/(a*b)^(1/2)*arctan(tan(d*x+c)^(1/2)*b/(a*b)^(1/2))+1/2/d/(a^2+b^2)*a*2^(1/2)*arctan(1+2^(1/2
)*tan(d*x+c)^(1/2))+1/2/d/(a^2+b^2)*a*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))+1/4/d/(a^2+b^2)*a*2^(1/2)*ln
((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))-1/4/d/(a^2+b^2)*b*2^(1/2)*ln
((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))-1/2/d/(a^2+b^2)*b*2^(1/2)*ar
ctan(1+2^(1/2)*tan(d*x+c)^(1/2))-1/2/d/(a^2+b^2)*b*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 92.3726, size = 15618, normalized size = 67.32 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="fricas")

[Out]

[1/4*(4*sqrt(2)*(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^5*sqrt((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b^3 + a
*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 +
 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4)*arctan(((a^8 + 2*a^6*b
^2 - 2*a^2*b^6 - b^8)*d^4*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*
sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + sqrt(2)*((a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*d^7*sqrt((a
^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d
^4)) + (a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 +
4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b
^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 +
 b^4)*d^4))*cos(d*x + c) + sqrt(2)*((a^6*b - a^4*b^3 - a^2*b^5 + b^7)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)
)*cos(d*x + c) + (a^5 - 2*a^3*b^2 + a*b^4)*d*cos(d*x + c))*sqrt((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b^3
+ a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(
1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b^4)*sin(d*x + c))/cos(d*x + c))*(1/((a^4 + 2*a^2*
b^2 + b^4)*d^4))^(3/4) + sqrt(2)*((a^11 + 3*a^9*b^2 + 2*a^7*b^4 - 2*a^5*b^6 - 3*a^3*b^8 - a*b^10)*d^7*sqrt((a^
4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^
4)) + (a^8*b + 2*a^6*b^3 - 2*a^2*b^7 - b^9)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4
*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^
2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/
4))/(a^4 - 2*a^2*b^2 + b^4)) + 4*sqrt(2)*(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^5*sqrt((a^4 + 2*a^2*b^2 + b^4 -
 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt((a^4 -
 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/
4)*arctan(-((a^8 + 2*a^6*b^2 - 2*a^2*b^6 - b^8)*d^4*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4
 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - sqrt(2)*((a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^
3*b^6 + a*b^8)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/
((a^4 + 2*a^2*b^2 + b^4)*d^4)) + (a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8
+ 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*
d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*d^2*
sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - sqrt(2)*((a^6*b - a^4*b^3 - a^2*b^5 + b^7)*d^3*sqrt(1/((a
^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + (a^5 - 2*a^3*b^2 + a*b^4)*d*cos(d*x + c))*sqrt((a^4 + 2*a^2*b^2 + b
^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(si
n(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b^4)*sin(d*x + c))/cos(d
*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4) - sqrt(2)*((a^11 + 3*a^9*b^2 + 2*a^7*b^4 - 2*a^5*b^6 - 3*a^3*
b^8 - a*b^10)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/(
(a^4 + 2*a^2*b^2 + b^4)*d^4)) + (a^8*b + 2*a^6*b^3 - 2*a^2*b^7 - b^9)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 +
 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d
^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 +
2*a^2*b^2 + b^4)*d^4))^(3/4))/(a^4 - 2*a^2*b^2 + b^4)) + sqrt(2)*(2*(a^3*b + a*b^3)*d^3*sqrt(1/((a^4 + 2*a^2*b
^2 + b^4)*d^4)) + (a^2 + b^2)*d)*sqrt((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4
+ 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4)*log(((a^6 - a^4*b^2
 - a^2*b^4 + b^6)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + sqrt(2)*((a^6*b - a^4*b^3 - a^2*b^5
 + b^7)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + (a^5 - 2*a^3*b^2 + a*b^4)*d*cos(d*x + c))*sqr
t((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a
^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b^
4)*sin(d*x + c))/cos(d*x + c)) - sqrt(2)*(2*(a^3*b + a*b^3)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + (a^2 +
 b^2)*d)*sqrt((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))
)/(a^4 - 2*a^2*b^2 + b^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4)*log(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*d^2*sq
rt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - sqrt(2)*((a^6*b - a^4*b^3 - a^2*b^5 + b^7)*d^3*sqrt(1/((a^4
 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + (a^5 - 2*a^3*b^2 + a*b^4)*d*cos(d*x + c))*sqrt((a^4 + 2*a^2*b^2 + b^4
 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(
d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b^4)*sin(d*x + c))/cos(d*x
 + c)) + 2*b*sqrt(-b/a)*log(-(6*a*b*cos(d*x + c)*sin(d*x + c) - (a^2 - b^2)*cos(d*x + c)^2 - b^2 + 4*(a^2*cos(
d*x + c)^2 - a*b*cos(d*x + c)*sin(d*x + c))*sqrt(-b/a)*sqrt(sin(d*x + c)/cos(d*x + c)))/(2*a*b*cos(d*x + c)*si
n(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2 + b^2)))/((a^2 + b^2)*d), 1/4*(4*sqrt(2)*(a^6 + 3*a^4*b^2 + 3*a^2*b^4
+ b^6)*d^5*sqrt((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4
)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4
))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4)*arctan(((a^8 + 2*a^6*b^2 - 2*a^2*b^6 - b^8)*d^4*sqrt((a^4 - 2*a^2*b
^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + sqrt(
2)*((a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a
^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + (a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*
d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2
 + b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqr
t(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + sqrt(2)*((a^6*b -
a^4*b^3 - a^2*b^5 + b^7)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + (a^5 - 2*a^3*b^2 + a*b^4)*d*
cos(d*x + c))*sqrt((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*
d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4
 - 2*a^2*b^2 + b^4)*sin(d*x + c))/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4) + sqrt(2)*((a^11 + 3*a
^9*b^2 + 2*a^7*b^4 - 2*a^5*b^6 - 3*a^3*b^8 - a*b^10)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^
4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + (a^8*b + 2*a^6*b^3 - 2*a^2*b^7 - b^9)*d
^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2
+ b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt
(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4))/(a^4 - 2*a^2*b^2 + b^4)) + 4*sqrt(2)*(a^6
 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^5*sqrt((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a
^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b
^4 + 4*a^2*b^6 + b^8)*d^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4)*arctan(-((a^8 + 2*a^6*b^2 - 2*a^2*b^6 - b^
8)*d^4*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^
2*b^2 + b^4)*d^4)) - sqrt(2)*((a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^
4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + (a^6*b + 3*a
^4*b^3 + 3*a^2*b^5 + b^7)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^
4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a
^4 - 2*a^2*b^2 + b^4))*sqrt(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x
 + c) - sqrt(2)*((a^6*b - a^4*b^3 - a^2*b^5 + b^7)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + (a
^5 - 2*a^3*b^2 + a*b^4)*d*cos(d*x + c))*sqrt((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1
/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2
 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b^4)*sin(d*x + c))/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3
/4) - sqrt(2)*((a^11 + 3*a^9*b^2 + 2*a^7*b^4 - 2*a^5*b^6 - 3*a^3*b^8 - a*b^10)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^4
)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + (a^8*b + 2*a^
6*b^3 - 2*a^2*b^7 - b^9)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4
)))*sqrt((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^
4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4))/(a^4 - 2*a^2*b^
2 + b^4)) + sqrt(2)*(2*(a^3*b + a*b^3)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + (a^2 + b^2)*d)*sqrt((a^4 +
2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 +
b^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4)*log(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*d^2*sqrt(1/((a^4 + 2*a^2*b^
2 + b^4)*d^4))*cos(d*x + c) + sqrt(2)*((a^6*b - a^4*b^3 - a^2*b^5 + b^7)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d
^4))*cos(d*x + c) + (a^5 - 2*a^3*b^2 + a*b^4)*d*cos(d*x + c))*sqrt((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b
^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c)
)*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b^4)*sin(d*x + c))/cos(d*x + c)) - sqrt(2)*(2*(
a^3*b + a*b^3)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + (a^2 + b^2)*d)*sqrt((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5
*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*(1/((a^4 + 2*a^2*b
^2 + b^4)*d^4))^(1/4)*log(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x +
 c) - sqrt(2)*((a^6*b - a^4*b^3 - a^2*b^5 + b^7)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + (a^5
 - 2*a^3*b^2 + a*b^4)*d*cos(d*x + c))*sqrt((a^4 + 2*a^2*b^2 + b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/(
(a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 +
 b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b^4)*sin(d*x + c))/cos(d*x + c)) + 8*b*sqrt(b/a)*arctan((2*a^2*b*cos(d*
x + c)^2*sin(d*x + c) + a*b^2*cos(d*x + c) + (a^3 - a*b^2)*cos(d*x + c)^3)*sqrt(b/a)*sqrt(sin(d*x + c)/cos(d*x
 + c))/(2*a*b^2*cos(d*x + c)^3 - 2*a*b^2*cos(d*x + c) - (b^3 + (a^2*b - b^3)*cos(d*x + c)^2)*sin(d*x + c))))/(
(a^2 + b^2)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b \tan{\left (c + d x \right )}\right ) \sqrt{\tan{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)**(1/2)/(a+b*tan(d*x+c)),x)

[Out]

Integral(1/((a + b*tan(c + d*x))*sqrt(tan(c + d*x))), x)

________________________________________________________________________________________

Giac [A]  time = 1.51507, size = 309, normalized size = 1.33 \begin{align*} \frac{2 \, b^{2} \arctan \left (\frac{b \sqrt{\tan \left (d x + c\right )}}{\sqrt{a b}}\right )}{{\left (a^{2} d + b^{2} d\right )} \sqrt{a b}} + \frac{{\left (\sqrt{2} a - \sqrt{2} b\right )} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} + 2 \, \sqrt{\tan \left (d x + c\right )}\right )}\right )}{2 \,{\left (a^{2} d + b^{2} d\right )}} + \frac{{\left (\sqrt{2} a - \sqrt{2} b\right )} \arctan \left (-\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} - 2 \, \sqrt{\tan \left (d x + c\right )}\right )}\right )}{2 \,{\left (a^{2} d + b^{2} d\right )}} + \frac{{\left (\sqrt{2} a + \sqrt{2} b\right )} \log \left (\sqrt{2} \sqrt{\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right )}{4 \,{\left (a^{2} d + b^{2} d\right )}} - \frac{{\left (\sqrt{2} a + \sqrt{2} b\right )} \log \left (-\sqrt{2} \sqrt{\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right )}{4 \,{\left (a^{2} d + b^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="giac")

[Out]

2*b^2*arctan(b*sqrt(tan(d*x + c))/sqrt(a*b))/((a^2*d + b^2*d)*sqrt(a*b)) + 1/2*(sqrt(2)*a - sqrt(2)*b)*arctan(
1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c))))/(a^2*d + b^2*d) + 1/2*(sqrt(2)*a - sqrt(2)*b)*arctan(-1/2*sqrt(2
)*(sqrt(2) - 2*sqrt(tan(d*x + c))))/(a^2*d + b^2*d) + 1/4*(sqrt(2)*a + sqrt(2)*b)*log(sqrt(2)*sqrt(tan(d*x + c
)) + tan(d*x + c) + 1)/(a^2*d + b^2*d) - 1/4*(sqrt(2)*a + sqrt(2)*b)*log(-sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x
 + c) + 1)/(a^2*d + b^2*d)